Weka is a powerful tool for data mining. It helps you explore data preparation, visualization, and analysis using classification and clustering algorithms. This exercise will guide you through using WEKA for your first data analysis task.
If you already have a dataset in CSV, Excel, or another format, you can convert it to ARFF using Weka’s built-in tools or online converters:
To convert a CSV file to ARFF via the command line, use the following command:
java -cp weka.jar weka.core.converters.CSVLoader yourfile.csv > yourfile.arff
If you want to create an ARFF file manually, you can use a text editor. Here’s the general structure of an ARFF file:
@RELATION dataset_name @ATTRIBUTE attribute1_name ATTRIBUTE_TYPE @ATTRIBUTE attribute2_name ATTRIBUTE_TYPE ... @ATTRIBUTE class_attribute_name {class1, class2, ...} @DATA value1, value2, ..., class_value value1, value2, ..., class_value ...
Here’s an example of a simple ARFF file:
@RELATION iris @ATTRIBUTE sepal_length NUMERIC @ATTRIBUTE sepal_width NUMERIC @ATTRIBUTE petal_length NUMERIC @ATTRIBUTE petal_width NUMERIC @ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica} @DATA 5.1, 3.5, 1.4, 0.2, Iris-setosa 4.9, 3.0, 1.4, 0.2, Iris-setosa 4.7, 3.2, 1.3, 0.2, Iris-setosa ...
Once you have your ARFF file ready:
For more information, refer to Weka Documentation.