Data Mining with WEKA

Weka is a powerful tool for data mining. It helps you explore data preparation, visualization, and analysis using classification and clustering algorithms. This exercise will guide you through using WEKA for your first data analysis task.

Exercise Instructions

1. Convert Your Dataset to ARFF Format

If you already have a dataset in CSV, Excel, or another format, you can convert it to ARFF using Weka’s built-in tools or online converters:

Using Weka GUI:

Using Weka Command Line:

To convert a CSV file to ARFF via the command line, use the following command:

java -cp weka.jar weka.core.converters.CSVLoader yourfile.csv > yourfile.arff

2. Creating ARFF Files Manually

If you want to create an ARFF file manually, you can use a text editor. Here’s the general structure of an ARFF file:

@RELATION dataset_name
@ATTRIBUTE attribute1_name ATTRIBUTE_TYPE
@ATTRIBUTE attribute2_name ATTRIBUTE_TYPE
...
@ATTRIBUTE class_attribute_name {class1, class2, ...}

@DATA
value1, value2, ..., class_value
value1, value2, ..., class_value
...
      

3. Example of ARFF File Structure

Here’s an example of a simple ARFF file:

@RELATION iris

@ATTRIBUTE sepal_length NUMERIC
@ATTRIBUTE sepal_width NUMERIC
@ATTRIBUTE petal_length NUMERIC
@ATTRIBUTE petal_width NUMERIC
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}

@DATA
5.1, 3.5, 1.4, 0.2, Iris-setosa
4.9, 3.0, 1.4, 0.2, Iris-setosa
4.7, 3.2, 1.3, 0.2, Iris-setosa
...
      

4. Using ARFF in Weka

Once you have your ARFF file ready:

For more information, refer to Weka Documentation.